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Abstract. Autonomous underwater vehicles (AUVs) have great ad-
vantages for activities in deep oceans, and are expected as the attractive
tool for near future underwater development or investigation. However,
AUVs have various problems which should be solved for motion control,
acquisition of sensors’ information, behavioral decision, navigation with-
out collision, self-localization and so on. This paper proposes an adaptive
biologically inspired neural controller for trajectory tracking of AUVs in
nonstationary environment. The kinematic adaptive neuro-controller is
an unsupervised neural network, which is termed Self-Organization Di-
rection Mapping Network (SODMN). The network uses an associative
learning system to generate transformations between spatial coordinates
and coordinates of propellers’ velocity. The neurobiological inspired con-
trol architecture requires no knowledge of the geometry of the robot or of
the quality, number, or configuration of the robot’s sensors. The SODMN
proposed in this paper represents a simplified way to understand in part
the mechanisms that allow the brain to collect sensory input to control
adaptive behaviours of autonomous navigation of the animals. The effi-
ciency of the proposed neurobiological inspired controller for autonomous
intelligent navigation was implemented on an underwater vehicle capable
of operating during large periods of time for observation and monitoring
tasks.

1 Introduction

With continuous advances in control, navigation, artificial intelligence, mater-
ial science, computer, sensor and communication, autonomous underwater ve-
hicles (AUVs) have become very attractive for various underwater tasks. The
autonomy is one of the most critical issues in developing AUVs. The design,
development, navigation, and control process of an AUV is a complex and ex-
pensive task.Various control architectures have been studied to help increase the
autonomy of AUVs [1—5].
Trajectory generation with obstacle avoidance is a fundamentally important

issue in robotics. Real-time collision-free trajectory generation becomes more
difficult when robots are in a dynamic, unstructured environment. There are a lot



of studies on trajectory generation for robots using various approaches problem
[2]. Some of the previous models [1—3] use global methods to search the possible
paths in the workspace, which normally deal with static environment only and
are computationally expensive when the environment is complex. Seshadri and
Ghosh [1] proposed a new path planning model using an iterative approach.
However this model is computationally complicated, particularly in a complex
environment. Li and Bui [2] proposed a fluid model for robot path planning in a
static environment. Oriolo et al. [3] proposed a model for real-time map building
and navigation for a mobile robot, where a global path planning plus a local
graph search algorithm and several cost functions are used.

Several neural network models [4—6] were proposed to generate real-time tra-
jectories through learning. Ritter et al. [6] proposed a Kohonen’s self-organizing
mapping algorithm based neural network model to learn the transformation from
Cartesian workspace to the robot manipulator joint space. Fujii et al. [4] pro-
posed a multilayer reinforcement learning based model for path planning with a
complicated collision avoidance algorithm. However, the generated trajectories
using learning based approaches are not optimal, particularly during the initial
learning phase.

Several papers [4, 5, 7, 8] examine the application of neural network (NN)
to the navigation and control of AUVs using a well-known backpropagation
algorithm and its variants since it is not possible to accurately express the dy-
namics of an AUV as linear in the unknown parameters. Unfortunately, the
backpropagation-based NN weight tuning is proven to have convergence and
stability problems. Further, an offline learning phase, which is quite expensive,
is required with the NN controllers [5].

In this paper, an unsupervised kinematic adaptive neuro-controller that can
learn to guide AUVs towards a target located at an arbitrary location in a 3-D
workspace is proposed. The underwater platform’s movements are controlled by
selecting the angular velocity of each propeller. The proposed kinematic adaptive
neuro-controller requires no information about the robot’s structure, is resistant
to a variety of disturbances, and is based on existing neural networks of bi-
ological sensory-motor control [7]. The kinematic adaptive neuro-controller is
a Self-Organization Direction Mapping Network (SODMN), and combines as-
sociative learning and Vector Associative Map (VAM) learning [8] to generate
transformations between spatial coordinates and coordinates of propellers’ veloc-
ity. The transformations are learned in an unsupervised training phase, during
which the underwater robot moves as a result of randomly selected propellers’
velocities. The robot learns the relationship between these velocities and the re-
sulting incremental movements. The efficacy of the proposed kinematic adaptive
neuro-controller is tested experimentally by an underwater vehicle capable of
operating during large periods of time for observation and monitoring tasks.

This paper is organized as follows. We first describe (Section II) the neural
control system for AUVs using the proposed SODMN. Section III addresses
experimental results with the proposed scheme for trajectory tracking control



and approach behavior over an underwater platform. Finally, in Section IV,
discussion and conclusions based on experimental results are given.

2 Architecture of the Neural Control System

Figure 1 illustrates our proposed neural architecture. The trajectory tracking
control without obstacles is implemented by the SODMN. The SODMN learns
to control the robot through a sequence of spontaneously generated random
movements. The random movements enable the neural network to learn the
relationship between angular velocities applied at the propellers and the incre-
mental displacement that ensues during a fixed time step. The proposed SODMN
combines associative learning and Vector Associative Map (VAM) learning [8]
to generate transformations between patial coordinates and coordinates of pro-
pellers’ velocity. The nature of the proposed kinematic adaptive neuro-controller
is that continuously calculates a vectorial difference between desired and actual
velocities, the underwater robot can move to arbitrary distances and angles even
though during the initial training phase it has only sampled a small range of dis-
placements. Furthermore, the online error-correcting properties of the proposed
architecture endow the controller with many useful properties, such as the abil-
ity to reach targets in spite of drastic changes of robot’s parameters or other
perturbations.
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Fig. 1. Structure of adaptive biologically inspired neural controller for trajectory track-
ing of AUVs.

For a dynamic positioning in the path tracking a PID controller was incor-
porated into the architecture of control system. It allows smooth the error signal
in the reaching of objetives.

2.1 Self-Organization Direction Mapping Network (SODMN)

At a given set of angular velocities the differential relationship between under-
water robot motions in spatial coordinates and angular velocities of propellers is
expressed like a linear mapping. This mapping varies with the velocities of pro-
pellers. The transformation of spatial directions to propellers’ angular velocities



is shown in Fig. 2. The tracking spatial error (e) is computed to get the desired
spatial direction vector (xd) and the spatial direction vector (DVs). The DVs
is transformed by the direction mapping network elements Vik to corresponding
motor direction vector (DVm). On the other hand, a set of tonically active in-
hibitory cells which receive broad-based inputs that determine the context of a
motor action was implemented as a context field. The context field selects the
Vik elements based on the propellers’ angular velocities configuration.
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Fig. 2. Architecture of self-organization direction mapping network for autonomous
robotic systems.

A speed-control GO signal acts as a nonspecific multiplicative gate and con-
trol the movement’s overall speed. The GO signal is a input from a decision center
in the brain, and starts at zero before movement and then grows smoothly to
a positive value as the movement develops. During the learning, sensed angular
velocities of propellers are fed into the DVm and the GO signal is inactive.
Activities of cells of the DVs are represented in the neural network by quan-

tities (S1, S2, ..., Sm), while activities of the cells of the motor direction vector
(DVm) are represented by quantities (R1, R2, ..., Rn). The direction mapping is
formed with a field of cells with activities Vik. Each Vik cell receives the complete
set of spatial inputs Sj , j = 1, ...,m, but connects to only one Ri cell (see Figure
2). The mechanism that is used to ensure weights converge to the correct linear
mapping is similar to the VAM learning construction [9]. The direction mapping
cells (V ∈ Rn×k) compute a difference of activity between the spatial and motor
direction vectors via feedback from DVm. During learning, this difference drives



the adjustment of the weights. During performance, the difference drives DVm
activity to the value encoded in the learned mapping.
A context field cell pauses when it recognizes a particular velocity state (i.e., a

velocity configuration) on its inputs, and thereby disinhibits its target cells. The
target cells (direction mapping cells) are completely shut off when their context
cells are inactive. This is shown in Fig. 2. Each context field cell projects to
a set of direction mapping cells, one for each velocity vector component. Each
velocity vector component has a set of direction mapping cells associated with it,
one for each context. A cell is “on” for a compact region of the velocity space. It
is assumed for simplicity that only one context field cell turns “on” at a time. In
Figure 2, inactive cells in the context field are shown as white disks. The center
context field cell is “on” when the angular velocities are in the center region of
the velocity space, in this three degree-of-freedom example. The “on” context
cell enables a subset of direction mapping cells through the inhibition variable
ck, while “off” context cells disable to the other subsets. When the kth context
cell is "off" or inactive (modeled as ck=0), in its target cells, the entire input
current to the soma is shunted away such that there remains only activity in the
axon hillock, wich decays to zero. When the kth context cell is "on" or active,
ck=1, its target cells (Vik) receive normal input.
The learning is obtained by decreasing weights in proportion to the product

of the presynaptic and postsynaptic activities. Therefore, the learning rule can
be obtained by using the gradient-descent algorithm. The training is done by
generating random movements, and by using the resulting angular velocities
and observed spatial velocities of the underwater robot as training vectors to
the direction mapping network.

3 Experimental results

The proposed biologically-inspired control system is implemented on a underwa-
ter robot from the UPCT (AUV-UPCT). The rebuilt vehicle was transferred to
the UPCT by the Spanish Navy. Figure 3 shows the underwater platform and the
interconnection scheme of hardware components from the AUV: Battery, CPU,
inertial positioning systems, compass, propulsion systems, video capture, incli-
nometers, water intrusion detectors, monitoring station, and sonars. It consists
of a pressure resistant body with 5 motor for propulsion and manoeuverability.
AUV-UPCT has a dimension of 1680 L × 600 W × 635 H (mm), a weight of
160 Kg, a maximum speed of 4 knots (48 V) and 2 knots (24 V), an opera-
cional depth of 300 mts, two vertical thrusters, two forward thrusters and one
transversal thruster. The core of central controller system is a Kontron 986LCD-
M/mITX motherboard. High-level control algorithms (SODMN) are written in
VC++ and run with a sampling time of 10 ms on the central controller system.

The proposed neural network model is capable of generating optimal tra-
jectory for underwater vehicles in an arbitrarily varying enviroment. The state
space is the Cartesian workspace of underwater robot. The proposed model is
the applied to a trajectory generation problem for a robot to track a target (O).
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Fig. 3. Autonomous underwater vehicle from the UPCT (AUV-UPCT).

The SODMN assumes a context field structure of 100 x 100 x 10 neuron. In a
3-D workspace without any obstacle, the traveling route of the target is shown
in Fig. 4(a) as indicated by circles, with an initial position at (x, y, z)= (0, 0, 4)
m. The robot was immersed in a controlled pool with 15 m deep in the indus-
trial area of Fuente Álamo, Murcia-Spain. Note that the depth was recorded as
positive (z) and that the proposed SODMN responds to the real-time location
of the targets with no prior knowledge of the varying enviroment. The under-
water robot starts to move from position (0, 0, 0) at a speed of 0.375 m/s. The
generated trajectory of the robot is shown in Fig. 4(a) by boxes. Tracking errors
of the adaptive controller system are shown in Fig. 4(b).

4 Discussion

In present model, appropriate operations are learned in an unsupervised fashion
through repeated action-perception cycles by recoding proprioceptive informa-
tion related to the underwater robot. The resulting solution has two interesting
properties: (a) the required transformation is executed accurately over a large
part of the reaching space, although few velocities are actually learned; and
(b) properties of single neurons and populations closely resemble those of neu-
rons and populations in parietal and cortical regions [10]. The activity of the
population of motor cortical cells which encode movement direction appears to
represent the instantaneous velocity of movement [11]. In addition, the preferred
directions of individual cells shifts with the movement origin, indicating that the
directional coding of motor cortex may be influenced by velocity configuration
(in the model is the context field) [12], as is necessary for a Jacobian-based map-
ping. Correspondence between layers of the network and brain regions can be
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Fig. 4. Adaptive neuro-controller performance. (a) Tracking control of a desired tra-
jectory. (b) Estimated tracking error.

made tentatively base on anatomical and physiological arguments [10, 11]. The
representation of DVs could be in posterior parietal cortex (PPC) [13]. Neu-
rons in PPC exhibit activity patterns correlated with the spatial direction of
movement [14]. A candidate region for participating in the direction mapping
computation is the cerebellum [15]. Also, note that there are certain similarities
between the nature of the context field cells in the underwater robot movement
model and the Purkinge cells of the adaptive timing model. Both types of cells
are tonically active and allow a response by “pausing” this tonic activity. Thus,
the possibility that a context field type of function is performed by cerebellar
cortex. The proposed direction mapping model also posits a learning site sepa-
rate from the context field computation, which might be a cerebellar function.
In the model, motor commands were emitted by a layer containing Ri neurons,
which contribute to the movement by a displacement along a direction in veloc-
ity space. The individual influence of a command neuron is proportional to its
discharge level.

4.1 Conclusions

In this paper, a biologically inspired neural network for the spatial reaching
tracking has been developed. This neural network is implemented as a kine-
matic adaptive neuro-controller. The SODMN uses a context field for learning
the direction mapping between spatial coordinates and coordinates of propellers’
velocity. The transformations are learned during an unsupervised training phase,
during which the underwater robot moves as result of randomly selected angular
velocities of propellers. It has the ability to adapt quickly for unknown states.
The model algorithm is computationally efficient and the computational com-
plexity linearly depends on the state space size of the neural network. The efficacy
of the proposed neural network for reaching and tracking behaviors was tested
experimentally by a underwater robot.
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